Bayesian inference - Case studies in ecotoxicology for practical exercices

Sandrine CHARLES
Université de Lyon; Université Lyon 1

Laboratory of Biometry and Evolutionnary Biology
CNRS; UMR 5558
43 boulevard du 11 novembre 1918
F-69622 Villeurbanne Cedex, FRANCE
sandrine.charles@univ-lyon1.fr

May 12, 2013

S. Charles

Examples from ecotoxicology
(1) Introduction

- Bioassays
- Critical Effect Concentrations
(2) Models
- Introduction
- Deterministic part
- Stochastic part
(3) Illustrative data
- Contaminant
- Species
- Experiments

Definition of bioassays

- Bioassay is a word commonly used instead of biological assay. It's a type of scientific experiment.
- Bioassays are typically conducted to measure the effects of potentially toxic substances on living organisms.
- Bioassays can be
- Qualitative: to assess physical effects of a substance that cannot be quantified (e.g., abnormality or deformity)
- Quantitative: to estimate the potency of a substance by measurement of the biological response/effect it produces; quantitative bioassays are typically analyzed using statistical methods.

Quantitative bioassays

Several kind of substances can be studied, for example:

- Pesticides, chemical, pharmaceutical, cosmetic substances
- Effluents (industrial discharges, outputs from water plants)
- Polluted soils, waste, sewage sludge, sediments

According to the substance, different kinds of experiments can be conducted:

- A control versus one treatment,
- A control and several treatments.

A treatment can be a fixed concentration of a substance $\left(C_{1}\right.$, $C_{2} \ldots$) or a time-variable concentration $C(t)$.

Classical scheme of bioassays

Under standard protocols, after time exposure d, individuals are counted in each flask.

Increasing concentration in toxicant

Observed responses or effects can be survival, growth, reproduction for example.

Who define standard protocols?

Organisation for Economic Cooperation and Development Free of charges

International Organization for Standardization
 Not free

Other institutions:

- US EPA (US Environmental Protection Agency)
- ASTM (American Society for Testing and Materials)
- DIN (Deutsches Institut für Normung)
- MITI (Ministry of International Trade and Industry in Japan)

Acute vs. chronic bioassays

- Acute toxicity: from some hours to some days (e.g., survival or mobility inhibition)
\rightarrow short-time exposure at high concentrations
\rightarrow rapid impact on organisms
- Chronic toxicity: from some days to some weeks (e.g., growth or reproduction inhibition, sub-individual biomarkers)
\rightarrow long-time exposure at low concentrations

Example of a bioassay

Daphnia sp., Acute Immobilisation Test (OECD 202, 1984) and Chronic Reproduction Test (OECD 211, 2012)

Acute test: the number of immobile daphnids is determined for each concentration at 24 and 48 hours.

Chronic test: offsprings are daily counted during 21 days.

Critical Effect Concentrations

... or "summary Statistics" or "thresholds"
\rightarrow Most common indicators to quantitatively assess risks for single species exposed to contaminants
\rightarrow Estimation of the exposure level (e.g., concentration) above which adverse effects can occur on organisms, and below which adverse effects are unlikely, i.e., which can not be distinguished from background noise (OECD 2006).

OECD (2006) Current approaches in the statistical analysis of ecotoxicity data: a guidance to application. Technical report.

No (Lowest) Observed Effect Concentration

- NOEC*: the highest concentration among the tested concentrations at which no statistically significant difference from the control can be highlighted.
- Good reasons to avoid such a concept: dependance on the experimental design, an improper use of p-values
* The NOEC has been here estimated by a Cochran-Armitage's test [Forfait-Dubuc et al., 2012]

x\% Effective Concentration

- $E C_{x}$: the estimated concentration that causes $x \%$ change in response.
- The plain line corresponds to a three-parameter log-logistic model fitted to the data (see further)

When the effect is mortality, $L C_{x}$ is the abbreviation used.

Does the dose make the poison?

Generally yes, for mono-substance exposure.

Endocrine disruptors are counter-examples (hormesis phenomenon).

Dose or Concentration-response or effect relationships?

Review of vocabulary:

- Dose refers to exposure, i.e., the amount of toxicant actually deposited within the body of organisms. But in ecotoxicology, only the exposure concentration is know:
\rightarrow We rather speak about concentration-response or effect relationships.
- Concentration-response relationships refer to the link between the exposure concentration and the proportion of individuals responding with an all-or-none effect.
- Concentration-effect relationships refer to the link between the exposure concentration and the magnitude of the induced biological change, measured in appropriate units.

Definition

A concentration-response/effect relationship is a simple $X-Y$ graph relating increasing levels of exposure (X) to the response/effect (Y) at a certain exposure time.

Examples of response:

- Quantal data, expressed as proportion or probability (e.g., mortality or immobilization)
Examples of effects:
- Ordered descriptive categories (e.g., severity of a lesion)
- Counts (e.g., reproduction products like eggs or clutches)
- Continuous measurements (e.g., body size)

Modelling : general considerations

From concentration-response/effect experiment, if there is a reasonable number of concentrations (>5) of the toxicant and a reasonably well-behaved response/effect, it is straightforward to fit a regression model.

A regression model relating a dependent variable Y (the response or the effect) to an explanatory variable X (the concentration) is composed of two parts:
(1) a deterministic part, which describes the mean value (or curve), e.g., a log-logistic model;
(2) a stochastic part, which represents the distribution around the mean curve (e.g., a normal distribution).

Nevertheless, each part depends on the nature of data to analyze.

The deterministic part

The log-logistic model is the most commonly concentration-response/effect model used in toxicology [Ritz, 2010].

$$
\begin{gathered}
Y=c+\frac{d-c}{1+\exp \left(b \times \log \left(\frac{X}{e}\right)\right)} \\
\Uparrow \\
Y=c+\frac{d-c}{1+\left(\frac{X}{e}\right)^{b}}
\end{gathered}
$$

b, c, d, e are positive, all with a geometric meaning.

The log-logistic model - Graph

In case of survival, d corresponds to the natural mortality (usually fixed to 1) and c is fixed to $0 . b=3, c=0.2, d=1.1$ and $e=0.38$.

$$
e=0.3 \text { (arbitrary unit) }
$$

The log-logistic model - Morphology

Case of survival, with $c=0$ and $d=1$: $e=L C_{50}$.

Variation of $\mathbf{b}\left(\mathrm{LC}_{50}=\mathbf{0 . 3}\right)$

Variation of $\mathrm{LC}_{50}(\mathbf{b}=\mathbf{3})$

Another deterministic part: the Pires-Fox model

This is a threshold model written as follows:

$$
\begin{aligned}
& Y=\alpha \exp (-\beta(X-N E C) I(X-N E C)) \\
& I(X-N E C)=\left\{\begin{array}{lll}
1 & \text { if } & X>N E C \\
0 & \text { if } & X \leq N E C
\end{array}\right.
\end{aligned}
$$

Parameter NEC is the No Effect Concentration.

[Fox D. (2010) A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicology and Environmental Safety, 73(2):123-31.]

The Pires-Fox model - Graph

In case of survival, parameter α is close but less than 1 . $\alpha=1.1, \beta=3$ and $N E C=0.3$

The Pires-Fox model - Morphology

$\alpha=1$

Variation of the effect intensity $\beta($ NEC $=0.3)$

Variation of the threshold NEC $(\beta=3)$

Quantal data - description

Quantal (or binary) data arise when a particular property is recorded to be present or absent in each individual (e.g., an individual shows an effect or it does not show an effect).

Therefore, these data can exhibit only two states.

Typically, quantal data are presented as the number of individuals showing the property (e.g., mortality) out of a total number of individuals observed in each experimental unit. Although this can be expressed as a fraction, the total number of individuals cannot generally be omitted.

Quantal data - Binomial stochastic part

With quantal experimental data (e.g., survival data), the stochastic part of the model is necessarily binomial.

Observations are then described by a model of the following form:

$$
Y \sim \mathcal{B}(p, n)
$$

where p is the probability of success (e.g., survival probability) as described by one of the dose-response models (log-logistic or Pires-Fox, see above), and n is the total number of individuals.

Principle of the binomial process

- A binomial statistical experiment consists of n repeated trials, each trial resulting in just two possible outcomes: success (of probability p) or failure.
- Trials are independant.
- Let Y be the number of successes resulting from a binomial experiment, then $Y \sim \mathcal{B}(p, n)$.
- The probability distribution of Y is a binomial distribution of mean $p \times n$ and variance $p \times(1-p) \times n$.

Binomial probability distribution - Graph

Binomial probability distribution - Morphology

$$
n=10
$$

Discrete data - description

Data are discrete if there are only a finite number of values possible or if there is a space on the number line between each two possible values.

Discrete data are usually obtained when we are counting something (using whole numbers).

They are also called count data.

Typical discrete data are reproduction data.

Discrete data - Poisson stochastic part

Count data are usually modelled using a Poisson distribution. If N is the number of reproduction outputs (e.g., eggs or clutches) at concentration X, then:

$$
N \sim \mathcal{P}(\lambda)
$$

with $\lambda=f(X)$ the mean of the Poisson distribution, that is the predicted mean value from the log-logistic or the Pires-Fox model (see above).

Poisson probability distribution - Vizualization

λ denotes both the mean and the variance of the distribution.

Continuous data - description

Data are continuous when they can (theoretically) take any value in an open interval.

Examples include measurements of length, body weight, etc.

Due to practical reasons the measured resolution depends on the quality of the measurement device.

Typically, continuous data have a dimension (e.g., g, cm, g. L^{-1}).

Continuous data - Gaussian stochastic part

With continuous experimental data, the currently encountered stochastic part is normal (or Gaussian), even if other stochastic parts may be sometimes more appropriate.

Observations are then described by a model of the following form:

$$
Y \sim \mathcal{N}(f(X, \theta), \sigma)
$$

with X the independant variables (e.g., the concentration), $f(X, \theta)$ the log-logistic or the Pires-Fox model and θ the vector of model parameters. This expression can equivalently be written as follows:

$$
Y=f(X, \theta)+\varepsilon \quad \text { with } \quad \varepsilon \sim \mathcal{N}(0, \sigma)
$$

The normal distribution is a bell-shaped probability density function with two parameters: mean μ and variance σ^{2}.

The bell-shaped Gaussian probability distribution

Variation of $\mu(\sigma=1)$

Variation of $\sigma(\mu=0)$

Illustrative data for chronic toxicity of chlordan

- Chlordan is an organochlorine insecticide, produced for agricultural and residential uses and for termite control.
- It is stable, highly lipophilic and persistent, with a biological half-life of several years in soils and sediments.
- It was forbidden for phytosanitary treatments in Europe in 70's, banned in US in 1978, but is still produced in China and Botswana.
- Approximately 20% of the 70,000 tons of chlordan manufactured since 1946 still exist unaltered in the environment.
\rightarrow chlordan toxicity is still a relevant question due to its widespread occurrence and environmental persistence.

Biological model: Daphnia magna

- Daphnia magna is a cladoceran, representative of freshwater crustacean species and zooplankton.
- Daphnids are the most significant herbivores among invertebrates
- They are considered as an important source of food for fish
- The Daphnia model is recommended by standard methods for aquatic ecotoxicity assessment;
- It is required by many international regulations because of its sensitivity to chemical environmental stressors;
- Daphnia holds a central position in aquatic food webs and is an intermediate between primary producers and fish.

Chronic toxicity test (OECD guideline 211)

- Daphnids ($<24 \mathrm{~h}$ old) were exposed for $21 d$ to measured concentrations of chlordan (mean \pm sd) of: $0,0.18 \pm 0.05$, $0.73 \pm 0.15,1.82 \pm 0.16,2.9 \pm 0.5$ and $7.0 \pm 3.5 \mu \mathrm{~g} . \mathrm{L}^{-1}$.
- Daphnids were raised individually in $50-\mathrm{ml}$ glass beakers containing 40 ml of test solution
- A total of $\mathbf{1 0}$ replicates for each treatment was performed.
- The incubation temperature was controlled at $20 \pm 1^{\circ} \mathrm{C}$
- A 16:8 h light:dark photoperiod was maintained.
- The test solution was renewed every $2 d$.

Survival data at day 21

S. Charles

Survival data at day $21 \rightarrow$ associated with their binomial 95\% confidence interval

Growth data at day 21: body length (in mm)

Reproduction data at day 21: cumulated number of eggs

Conclusion: towards practical exercices

- D. magna data (survival and growth) will be used in the first part of practical exercises.
- In the second part of practical exercises, we will study reproduction of snails exposed to some toxicant.
- In the last part of practical exercices, we will analyze two survival datasets:
(1) D. magna exposed to cadmium,
(2) Snails exposed to some toxicant.

