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Introduction

The purpose of this document is to guide you through the practical sessions.
This document complements:

• the slides of Marie Laure Delignette-Muller’s lecture which provides an
introduction to Bayesian inference.

• the slides of Sandrine Charles’s lecture which provides an overview of
the practical exercises, with elements of context, particularities and
modelling for the different case studies.

• the slides of Elise Billoir’s lecture which provides information about
the practice of Bayesian inference within the R/JAGS/rjags software
combo.

This document is meant to help you run the first example described in
Elise Billoir’s lecture and other applications, basic ones then more advanced
ones. The solution (R code) is in the documents:

• Bayesian inference - Practical exercises - Dose-response modelling
of survival and growth data,

• Bayesian inference - Practical exercises - Reproduction data,

• Bayesian inference - Practical exercises - Survival data.
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According to the table of content of the present document, we propose to
work on the following examples:

1. Dose-response modelling

• Survival data (Binomial error model)

– log-logistic concentration-response curve

– Pires-Fox concentration-response curve

• Growth data (Gaussian error model)

– log-logistic concentration-response curve

– Pires-Fox concentration-response curve

• Reproduction data (Poisson error model)

– with a simple Poisson error model

– with an overdispersed Poisson error model∗

2. Time-concentration-response modelling of survival data∗ (Conditional
binomial and multinomial error model)

∗ these are advanced examples meant for the short course participants
quickly comfortable with the basic applications.

1 Dose-response modelling

1.1 Survival data

1.1.1 Log-logistic model

This first example is detailed in the slides of Elise Billoir’s lecture. The
data file (chlordan survival 21day.txt) is provided, as well as the model
specification file (logistic binomial.txt).

The first proposed exercice is to run this example by your own
on your computer, using the R code shown on the slides.

Before the next examples, just a reminder: the successive steps for carry-
ing out Bayesian inference are as follows:

1. Setting the data (including information to define priors)

2. Visualizing the data

3. Specifying the model according to BUGS/JAGS syntax
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4. Initializing the model + data

5. Burn-in phase

6. Further running the algorithm + monitoring of parameters to generate
samples

7. Convergence checking

8. Visualizing the results : summary statistics, sample trace and posterior
distributions

9. View of the joint posterior distribution

10. Comparison of prior and posterior statistics

11. Visualizing the fitting (model and observed data)

12. Visualizing the fitting (model, observed data and predicted data)

13. Calculation of the deviance information criterion (DIC)

1.1.2 Threshold model

The idea with this second example is to try fitting another concentration-
response curve to the survival data set. After the log-logistic model,
let’s use the so-called Pires-Fox model (Pires et al. 1997, Fox 2010). This is
a threshold model that writes as follows:

Y = d exp(−b(x− nec)I(x− nec))

I(x− nec) =

{
1 if x > nec
0 if x ≤ nec

There are three parameters: nec, the threshold, (a.k.a. No Effect Concen-
tration in ecotoxicology), d, the basal (i.e., control) response and b, reflecting
the slope (i.e., effect intensity).

The main changes concern Step 3 (model specification), though some of
next steps have to be modified accordingly.

Hint 1 We suggest that you name the R objects related to this second
example M2, M2.MCMC, M2.su, etc..
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Hint 2 Lines 5 and 10 to 13 of the below specification (which is the previ-
ously used log-logistic model) have to be changed. We suggest that you save
this new model specification file as PiresFox binomial.txt.

1 model

2 {

3 for (i in 1:n)

4 {

5 p[i]<-1/(1+pow((x[i]/LC50),b))

6 y[i]~ dbin(p[i],Ninit[i])

7 }

8

9 # specification of priors (may be changed if needed)

10 log10b ~ dunif(-2,2)

11 log10LC50 ~ dnorm(meanlog10LC50 , taulog10LC50)

12 b <- pow(10,log10b)

13 LC50 <- pow(10,log10LC50)

14 }

Hint 3 In the BUGS/JAGS syntax, there is a so-called step(x) function
that tests for x ≥ 0, returning 1 if true, else 0. This is equivalent to the I()
notation used in the model description.

Hint 4 We suggest that you use the following priors:

• d ∼ Unif(inf = 0, sup = dmax) with dmax = 1 since its a survival
probability.

• log 10(b) ∼ Unif(inf = −2, sup = 2) (same as in the first example)

• use the same strategy for nec as the one used in the first example for
LC50

Chapters 6 and 7 of the JAGS manual (provided as Appendix) can help
you with the BUGS/JAGS syntax.

1.2 Growth data

The idea is now to work on another type of data. Therefore, the stochastic
part of the model (i.e. the error model) has to be adapted accordingly. The
data are provided in the file chlordan growth 21day.txt.
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1.2.1 Log-logistic model

The main changes concern Step 1 (data setting) and Step 3 (model specifi-
cation), but the other steps have to be modified accordingly.

Hint 1 We suggest that you name the R objects related to this third ex-
ample M3, M3.MCMC, M3.su, etc..

Hint 2 For setting the growth data, you now have to read the data table
in chlordan growth 21day.txt and adapt to the column names.

Hint 3 Again, the model specification has to be changed. We suggest that
you save the new model specification file as logistic normal.txt.

Hint 4 This example uses the log-logistic equation for the deterministic
part of the model, as it was the case in the first example with survival data
(Elise Billoir’s lecture). However in the first example with survival data, we
have used a 2-parameter log-logistic model, fixing d = 1 and c = 0 because we
considered that the survival probability decreased from 1 to 0 with increasing
concentration. For the growth endpoint, it does not make sense to fix those
parameters, therefore we use the 4-parameter log-logistic model which writes
as follows :

Y = c+
d− c

1 + (x
e
)b

Hint 5 We suggest that you describe the data variability using a Gaussian
error model. Table 7.1 (of the JAGS manual) indicates how to specify a
normal (i.e. Gaussian) error model according to the BUGS/JAGS syntax.
Be careful, the parameter τ used in this syntax is not the standard deviation
σ but the precision (τ = 1

σ2 ).

Hint 6 We suggest that you use the following priors:

• d ∼ Unif(inf = 0, sup = dmax) with dmax = 5

• c ∼ Unif(inf = 0, sup = cmax) with cmax = 5

• log 10(b) ∼ Unif(inf = −2, sup = 2) (same as in the previous exam-
ples)

• σ ∼ Unif(inf = 0, sup = 2), also specifying in the model that tau <-

1/pow(sigma,2)
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• use the same strategy for e as the one used in the first example for
LC50

Table 7.1 (of the JAGS manual) will help you write them according to the
BUGS/JAGS syntax.

1.2.2 Threshold model

The idea with this last example is to try fitting another concentration-effect
curve to the growth data set: the Pires-Fox model given above. The main
changes concern Step 3 (model specification), but the next steps have to be
modified accordingly.

Hint 1 We suggest that you name the R objects related to this fourth
example M4, M4.MCMC, M4.su, etc..

Hint 2 Again, the model specification has to be changed. We suggest that
you save the new model specification file as PiresFox normal.txt.

Hint 3 We suggest that you use the same priors as for survival data since
it is the same concentration range, though adjusting the value of dmax and
adding a prior for σ as in the previous example.

1.3 Reproduction data

In this part we will work on a third type of data, concerning reproduction.
The idea is to work on the stochastic part of the model, always using the
3-parameter log-logistic model (with c = 0) for the deterministic part. The
data are provided in the file snails repro.txt. Two variables can be mod-
elled as a function of concentration (conc):

• the number of eggs (Neggcumul)

• or the number of clutches (Nclutchcumul)

produced by snails after 56 days of exposure to a toxicant. As this exposure
also induced mortality among individuals, we will take as a covariable in the
model, the number of days each animal stayed alive during the experiment.
For this purpose, the cumulated number of individual-days (Nindtime) was
calculated for each replicate. In this experiment, a replicate corresponds to
a pool of 5 animals raised in the same beaker. The cumulated number of
individual-days corresponds to the sum of the numbers of days each animal
of the replicate stayed alive during the experiment.
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1.3.1 Poisson error model

Count data are often modelled using a Poisson distribution. Suppose the
mean number of eggs (or clutches) per individual-day (Y ) is described as
follows for an exposure concentration x:

Y = f(x) =
d

1 + (x
e
)b

The Poisson model then describes the observed number of eggs (or clutches)
for replicate j exposed to concentration xj by

Nj ∼ Poisson(f(xj)× nidj)

with nidj the cumulated number of individual-days in replicate j.

Hint 1 We suggest that you try to fit this model first to egg data. Concern-
ing the definition of priors we suggest that you model following information:

• a maximum value of d at 100

• log 10(b) ∼ Unif(inf = −2, sup = 2)

• a lognormal distribution of e (which here corresponds to EC50) assum-
ing equal to 95% the probability that e lies between the smallest and
the highest tested concentrations.

Hint 2 After a classical exploration of your results, we suggest that you
focus on the stochastic part by performing posterior predictive check. We
suggest that you use the model and the joint posterior distribution of pa-
rameters to simulate cumulated numbers of eggs for each replicate. Then we
suggest you plot predicted values as 95% credible intervals, against observed
values.

Hint 3 We suggest that you calculate the deviance information criterion
of this model fitted to egg data.

1.3.2 An overdispersed Poisson error model

Several methods may be used to model an overdispersion based on the Pois-
son model. We suggest that you try a hierarchical gamma-Poisson model
described as follows:

Nj ∼ Poisson(Fj × nidj)
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with Fj from a gamma distribution of mean f(xj) and of dispersion pa-
rameter β. Such a gamma distribution is parameterized in JAGS/BUGS by
its shape (α) and its rate (β). Its mean is equal to α

β
and its variance to α

β2 .
Fj is then defined as follows:

Fj ∼ gamma(αj, β)

with αj = f(xj)× β

Hint 1 We suggest that you try to fit this model first to egg data. Con-
cerning the definition of priors, we suggest that you use the same information
as in the Poisson model for d, b and e, and a uniform distribution between
-2 and 2 for log10(β).

Hint 2 After a classical exploration of your results, as with the Poisson
model, we suggest that you focus on the stochastic part by plotting the pre-
dicted values as 95% credible intervals against observed values and compare
the results to those obtained with the Poisson model fitted to the same data.

Hint 3 We suggest that you calculate the deviance information criterion
of this model fitted to egg data and compare it to the one obtained with the
Poisson model fitted to the same data.

Hint 4 At last, you could compare both models to fit clutch data.

2 Time-concentration-response modelling

In this part, we will work with survival data both concentration- and time-
dependent:

1. A survival dataset on Daphnia magna exposed to a range of zinc con-
centrations (file daphnids survival.txt).

2. A survival dataset on snails exposed to a range of concentrations of
some toxicant as provided in the file snails survival.txt

The deterministic part of the model will be a threshold time-dependent
survival model written as follows:

S(x, t) = e−h(x)×t
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with S(x, t) the survival probability at concentration x and time t, and h(x)
the instantaneous mortality rate at concentration x.

Function h(x) writes as follows:

h(x) =

{
h0 if x ≤ necS
h0 + kS(x− necS) else

with necS the No Effect Concentration, kS a coefficient of the effect intensity
and h0 the instantaneous natural mortality rate.

More details about this model can be found in Forfait-Dubuc et al. (2012)1.

2.1 A conditional binomial stochastic part

Given the nature of data (binary time-dependent survival data), the stochas-
tic part can be thought as a conditional binomial law:

Y (x, t) ∼ B(p(x, t), Y (x, t− 1))

with Y (x, t) the number of survivors at concentration x and time t, and
p(x, t) the probability to survive at concentration x between t− 1 and t for
organisms which are still alive at time t− 1:

p(x, t) = 1− S(x, t− 1)− S(x, t)

S(x, t− 1)

Hint 1 First, upload D. magna data file. Then, vizualize the data accord-
ing to both time and concentration. For this purpose, we provide you with
the file plot_functions.R. In particular, look at the function plotTandC.
The vizualization may suggest to you that fixing h0 = 0 is reasonable for this
dataset.

Hint 2 Try to fit a two-parameter threshold model to D. magna data with
the following prior definition:

• kS ∼ Unif(inf = −1.5, sup = 0.5)

• a lognormal distribution of necS assuming equal to 95% the probability
that necS lies between the smallest and the highest tested concentra-
tions in log scale.

1Forfait-Dubuc, C., Charles, S., Billoir, E., & Delignette-Muller, M. (2012). Survival
data analyses in ecotoxicology: critical effect concentrations, methods and models. What
should we use? Ecotoxicology, 1–12.
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Hint 3 Check for convergence and explore your fit results. In particular,
superimpose the fitted curve with median parameter values to the data. Also
compare priors and posteriors, on the basis of either the associated statistics
or their distributions.

Hint 4 Switch now to the snail dataset (file snail survival.txt). Would
you fit the same model as with D. magna data? If not, on which criterion(s)
would you compare both models?

2.2 A multinomial stochastic part

The stochastic part may equivalently be written as a multinomial law (a
generalization of the binomial law). See Jager et al. (2011) for more details2.

Hint Rewrite the previous model with a multinomial stochastic part in-
stead of the conditional binomial one. Check for equivalence. Do you see
any reason to prefer this modelling way?

2Jager, T., Albert, C., Preuss, T., & Ashauer, R. (2011). General Unified Threshold
Model of Survival-a Toxicokinetic-Toxicodynamic Framework for Ecotoxicology. Environ-
mental Science & Technology, 45, 2529–2540.
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